Core Based Trees (CBT) Multicast Routing Architecture :: RFC2201
Network Working Group A. Ballardie
Request for Comments: 2201 Consultant
Category: Experimental September 1997
Core Based Trees (CBT) Multicast Routing Architecture
Status of this Memo
This memo defines an Experimental Protocol for the Internet
community. This memo does not specify an Internet standard of any
kind. Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Abstract
CBT is a multicast routing architecture that builds a single delivery
tree per group which is shared by all of the group's senders and
receivers. Most multicast algorithms build one multicast tree per
sender (subnetwork), the tree being rooted at the sender's
subnetwork. The primary advantage of the shared tree approach is
that it typically offers more favourable scaling characteristics than
all other multicast algorithms.
The CBT protocol [1] is a network layer multicast routing protocol
that builds and maintains a shared delivery tree for a multicast
group. The sending and receiving of multicast data by hosts on a
subnetwork conforms to the traditional IP multicast service model
[2].
CBT is progressing through the IDMR working group of the IETF. The
CBT protocol is described in an accompanying document [1]. For this,
and all IDMR-related documents, see http://www.cs.ucl.ac.uk/ietf/idmr
TABLE OF CONTENTS
1. Background................................................... 2
2. Introduction................................................. 2
3. Source Based Tree Algorithms................................. 3
3.1 Distance-Vector Multicast Algorithm...................... 4
3.2 Link State Multicast Algorithm........................... 5
3.3 The Motivation for Shared Trees.......................... 5
4. CBT - The New Architecture................................... 7
4.1 Design Requirements...................................... 7
4.2 Components & Functions................................... 8
4.2.1 CBT Control Message Retransmission Strategy........ 10
4.2.2 Non-Member Sending................................. 11
5. Interoperability with Other Multicast Routing Protocols ..... 11
Ballardie Experimental [Page 1]
RFC 2201 CBT Multicast Routing Architecture September 1997
6. Core Router Discovery........................................ 11
6.1 Bootstrap Mechanism Overview............................. 12
7. Summary ..................................................... 13
8. Security Considerations...................................... 13
Acknowledgements ............................................... 14
References ..................................................... 14
Author Information.............................................. 15
1. Background
Shared trees were first described by Wall in his investigation into
low-delay approaches to broadcast and selective broadcast [3]. Wall
concluded that delay will not be minimal, as with shortest-path
trees, but the delay can be kept within bounds that may be
acceptable. Back then, the benefits and uses of multicast were not
fully understood, and it wasn't until much later that the IP
multicast address space was defined (class D space [4]). Deering's
work [2] in the late 1980's was pioneering in that he defined the IP
multicast service model, and invented algorithms which allow hosts to
arbitrarily join and leave a multicast group. All of Deering's
multicast algorithms build source-rooted delivery trees, with one
delivery tree per sender subnetwork. These algorithms are documented
in [2].
After several years practical experience with multicast, we see a
diversity of multicast applications and correspondingly, a wide
variety of multicast application requirements. For example,
distributed interactive simulation (DIS) applications have strict
requirements in terms of join latency, group membership dynamics,
group sender populations, far exceeding the requirements of many
other multicast applications.
The multicast-capable part of the Internet, the MBONE, continues to
expand rapidly. The obvious popularity and growth of multicast means
that the scaling aspects of wide-area multicasting cannot be
overlooked; some predictions talk of thousands of groups being
present at any one time in the Internet.
We evaluate scalability in terms of network state maintenance,
bandwidth efficiency, and protocol overhead. Other factors that can
affect these parameters include sender set size, and wide-area
distribution of group members.
2. Introduction
Multicasting on the local subnetwork does not require either the
presence of a multicast router or the implementation of a multicast
routing algorithm; on most shared media (e.g. Ethernet), a host,
Ballardie Experimental [Page 2]
RFC 2201 CBT Multicast Routing Architecture September 1997
which need not necessarily be a group member, simply sends a
multicast data packet, which is received by any member hosts
connected to the same medium.
For multicasts to extend beyond the scope of the local subnetwork,
the subnet must have a multicast-capable router attached, which
itself is attached (possibly "virtually") to another multicast-
capable router, and so on. The collection of these (virtually)
connected multicast routers forms the Internet's MBONE.
All multicast routing protocols make use of IGMP [5], a protocol that
operates between hosts and multicast router(s) belonging to the same
subnetwork. IGMP enables the subnet's multicast router(s) to monitor
group membership presence on its directly attached links, so that if
multicast data arrives, it knows over which of its links to send a
copy of the packet.
In our description of the MBONE so far, we have assumed that all
multicast routers on the MBONE are running the same multicast routing
protocol. In reality, this is not the case; the MBONE is a collection
of autonomously administered multicast regions, each region defined
by one or more multicast-capable border routers. Each region
independently chooses to run whichever multicast routing protocol
best suits its needs, and the regions interconnect via the "backbone
region", which currently runs the Distance Vector Multicast Routing
Protocol (DVMRP) [6]. Therefore, it follows that a region's border
router(s) must interoperate with DVMRP.
Different algorithms use different techniques for establishing a
distribution tree. If we classify these algorithms into source-based
tree algorithms and shared tree algorithms, we'll see that the
different classes have considerably different scaling
characteristics, and the characteristics of the resulting trees
differ too, for example, average delay. Let's look at source-based
tree algorithms first.
3. Source-Based Tree Algorithms
The strategy we'll use for motivating (CBT) shared tree multicast is
based, in part, in explaining the characteristics of source-based
tree multicast, in particular its scalability.
Most source-based tree multicast algorithms are often referred to as
"dense-mode" algorithms; they assume that the receiver population
densely populates the domain of operation, and therefore the
accompanying overhead (in terms of state, bandwidth usage, and/or
processing costs) is justified. Whilst this might be the case in a
local environment, wide-area group membership tends to be sparsely
Ballardie Experimental [Page 3]
RFC 2201 CBT Multicast Routing Architecture September 1997
distributed throughout the Internet. There may be "pockets" of
denseness, but if one views the global picture, wide-area groups tend
to be sparsely distributed.
Source-based multicast trees are either built by a distance-vector
style algorithm, which may be implemented separately from the unicast
routing algorithm (as is the case with DVMRP), or the multicast tree
may be built using the information present in the underlying unicast
routing table (as is the case with PIM-DM [7]). The other algorithm
used for building source-based trees is the link-state algorithm (a
protocol instance being M-OSPF [8]).
3.1. Distance-Vector Multicast Algorithm
The distance-vector multicast algorithm builds a multicast delivery
tree using a variant of the Reverse-Path Forwarding technique [9].
The technique basically is as follows: when a multicast router
receives a multicast data packet, if the packet arrives on the
interface used to reach the source of the packet, the packet is
forwarded over all outgoing interfaces, except leaf subnets with no
members attached. A "leaf" subnet is one which no router would use
to reach the souce of a multicast packet. If the data packet does not
arrive over the link that would be used to reach the source, the
packet is discarded.
This constitutes a "broadcast & prune" approach to multicast tree
construction; when a data packet reaches a leaf router, if that
router has no membership registered on any of its directly attached
subnetworks, the router sends a prune message one hop back towards
the source. The receiving router then checks its leaf subnets for
group membership, and checks whether it has received a prune from all
of its downstream routers (downstream with respect to the source).
If so, the router itself can send a prune upstream over the interface
leading to the source.
The sender and receiver of a prune message must cache the