Home   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Internet Group Management Protocol, Version 2 :: RFC2236








Network Working Group                                            W. Fenner
Request for Comments: 2236                                      Xerox PARC
Updates: 1112                                                November 1997
Category: Standards Track


             Internet Group Management Protocol, Version 2


Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1997).  All Rights Reserved.

Abstract

   This memo documents IGMPv2, used by IP hosts to report their
   multicast group memberships to routers.  It updates STD 5, RFC 1112.

   IGMPv2 allows group membership termination to be quickly reported to
   the routing protocol, which is important for high-bandwidth multicast
   groups and/or subnets with highly volatile group membership.

   This document is a product of the Inter-Domain Multicast Routing
   working group within the Internet Engineering Task Force.  Comments
   are solicited and should be addressed to the working group's mailing
   list at idmr@cs.ucl.ac.uk and/or the author(s).

1.  Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC 2119].

2.  Introduction

   The Internet Group Management Protocol (IGMP) is used by IP hosts to
   report their multicast group memberships to any immediately-
   neighboring multicast routers.  This memo describes only the use of
   IGMP between hosts and routers to determine group membership.
   Routers that are members of multicast groups are expected to behave



Fenner                      Standards Track                     [Page 1]

RFC 2236           Internet Group Management Protocol      November 1997


   as hosts as well as routers, and may even respond to their own
   queries.  IGMP may also be used between routers, but such use is not
   specified here.

   Like ICMP, IGMP is a integral part of IP.  It is required to be
   implemented by all hosts wishing to receive IP multicasts.  IGMP
   messages are encapsulated in IP datagrams, with an IP protocol number
   of 2.  All IGMP messages described in this document are sent with IP
   TTL 1, and contain the IP Router Alert option [RFC 2113] in their IP
   header.  All IGMP messages of concern to hosts have the following
   format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Type     | Max Resp Time |           Checksum            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Group Address                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

2.1.  Type

   There are three types of IGMP messages of concern to the host-
   router interaction:

   0x11 = Membership Query
        There are two sub-types of Membership Query messages:
        - General Query, used to learn which groups have members on an
          attached network.
        - Group-Specific Query, used to learn if a particular group
          has any members on an attached network.

        These two messages are differentiated by the Group Address, as
        described in section 1.4 .  Membership Query messages are
        referred to simply as "Query" messages.

   0x16 = Version 2 Membership Report

   0x17 = Leave Group

   There is an additional type of message, for backwards-compatibility
   with IGMPv1:

   0x12 = Version 1 Membership Report







Fenner                      Standards Track                     [Page 2]

RFC 2236           Internet Group Management Protocol      November 1997


   This document refers to Membership Reports simply as "Reports".  When
   no version is specified, the statement applies equally to both
   versions.

   Unrecognized message types should be silently ignored.  New message
   types may be used by newer versions of IGMP, by multicast routing
   protocols, or other uses.

2.2.  Max Response Time

   The Max Response Time field is meaningful only in Membership Query
   messages, and specifies the maximum allowed time before sending a
   responding report in units of 1/10 second.  In all other messages, it
   is set to zero by the sender and ignored by receivers.

   Varying this setting allows IGMPv2 routers to tune the "leave
   latency" (the time between the moment the last host leaves a group
   and when the routing protocol is notified that there are no more
   members), as discussed in section 7.8.  It also allows tuning of the
   burstiness of IGMP traffic on a subnet, as discussed in section 7.3.

2.3.  Checksum

   The checksum is the 16-bit one's complement of the one's complement
   sum of the whole IGMP message (the entire IP payload).  For computing
   the checksum, the checksum field is set to zero.  When transmitting
   packets, the checksum MUST be computed and inserted into this field.
   When receiving packets, the checksum MUST be verified before
   processing a packet.

2.4.  Group Address

   In a Membership Query message, the group address field is set to zero
   when sending a General Query, and set to the group address being
   queried when sending a Group-Specific Query.

   In a Membership Report or Leave Group message, the group address
   field holds the IP multicast group address of the group being
   reported or left.

2.5.  Other fields

   Note that IGMP messages may be longer than 8 octets, especially
   future backwards-compatible versions of IGMP.  As long as the Type is
   one that is recognized, an IGMPv2 implementation MUST ignore anything
   past the first 8 octets while processing the packet.  However, the
   IGMP checksum is always computed over the whole IP payload, not just
   over the first 8 octets.



Fenner                      Standards Track                     [Page 3]

RFC 2236           Internet Group Management Protocol      November 1997


3.  Protocol Description

   Note that defaults for timer values are described later in this
   document.  Timer and counter names appear in square brackets.

   The term "interface" is sometimes used in this document to mean "the
   primary interface on an attached network"; if a router has multiple
   physical interfaces on a single network this protocol need only run
   on one of them.  Hosts, on the other hand, need to perform their
   actions on all interfaces that have memberships associated with them.

   Multicast routers use IGMP to learn which groups have members on each
   of their attached physical networks.  A multicast router keeps a list
   of multicast group memberships for each attached network, and a timer
   for each membership.  "Multicast group memberships" means the
   presence of at least one member of a multicast group on a given
   attached network, not a list of all of the members.  With respect to
   each of its attached networks, a multicast router may assume one of
   two roles: Querier or Non-Querier.  There is normally only one
   Querier per physical network.  All multicast routers start up as a
   Querier on each attached network.  If a multicast router hears a
   Query message from a router with a lower IP address, it MUST become a
   Non-Querier on that network.  If a router has not heard a Query
   message from another router for [Other Querier Present Interval], it
   resumes the role of Querier.  Routers periodically [Query Interval]
   send a General Query on each attached network for which this router
   is the Querier, to solicit membership information.  On startup, a
   router SHOULD send [Startup Query Count] General Queries spaced
   closely together [Startup Query Interval] in order to quickly and
   reliably determine membership information.  A General Query is
   addressed to the all-systems multicast group (224.0.0.1), has a Group
   Address field of 0, and has a Max Response Time of [Query Response
   Interval].

   When a host receives a General Query, it sets delay timers for each
   group (excluding the all-systems group) of which it is a member on
   the interface from which it received the query.  Each timer is set to
   a different random value, using the highest clock granularity
   available on the host, selected from the range (0, Max Response Time]
   with Max Response Time as specified in the Query packet.  When a host
   receives a Group-Specific Query, it sets a delay timer to a random
   value selected from the range (0, Max Response Time] as above for the
   group being queried if it is a member on the interface from which it
   received the query.  If a timer for the group is already running, it
   is reset to the random value only if the requested Max Response Time
   is less than the remaining value of the running timer.  When a
   group's timer expires, the host multicasts a Version 2 Membership
   Report to the group, with IP TTL of 1.  If the host receives another



Fenner                      Standards Track                     [Page 4]

RFC 2236           Internet Group Management Protocol      November 1997


   host's Report (version 1 or 2) while it has a timer running, it stops
   its timer for the specified group and does not send a Report, in
   order to suppress duplicate Reports.

   When a router receives a Report, it adds the group being reported to
   the list of multicast group memberships on the network on which it
   received the Report and sets the timer for the membership to the
   [Group Membership Interval].  Repeated Reports refresh the timer.  If
   no Reports are received for a particular group before this timer has
   expired, the router assumes that the group has no local members and
   that it need not forward remotely-originated multicasts for that
   group onto the attached network.

   When a host joins a multicast group, it should immediately transmit
   an unsolicited Version 2 Membership Report for that group, in case it
   is the first member of that group on the network.  To cover the
   possibility of the initial Membership Report being lost or damaged,
   it is recommended that it be repeated once or twice after short
   delays [Unsolicited Report Interval].  (A simple way to accomplish
   this is to send the initial Version 2 Membership Report and then act
   as if a Group-Specific Query was received for that group, and set a
   timer appropriately).

   When a host leaves a multicast group, if it was the last host to
   reply to a Query with a Membership Report for that group, it SHOULD
   send a Leave Group message to the all-routers multicast group
   (224.0.0.2). If it was not the last host to reply to a Query, it MAY
   send nothing as there must be another member on the subnet.  This is
   an optimization to reduce traffic; a host without sufficient storage
   to remember whether or not it was the last host to reply MAY always
   send a Leave Group message when it leaves a group.  Routers SHOULD
   accept a Leave Group message addressed to the group being left, in
   order to accommodate implementations of an earlier version of this
   standard.  Leave Group messages are addressed to the all-routers
   group because other group members have no need to know that a host
   has left the group, but it does no harm to address the message to the
   group.

   When a Querier receives a Leave Group message for a group that has
   group members on the reception interface, it sends [Last Member Query
   Count] Group-Specific Queries every [Last Member Query Interval] to
   the group being left.  These Group-Specific Queries have their Max
   Response time set to [Last Member Query Interval].  If no Reports are
   received after the response time of the last query expires, the
   routers assume that the group has no local members, as above.  Any
   Querier to non-Querier transition is ignored during this time; the
   same router keeps sending the Group-Specific Queries.




Fenner                      Standards Track                     [Page 5]

RFC 2236           Internet Group Management Protocol      November 1997


   Non-Queriers MUST ignore Leave Group messages, and Queriers SHOULD
   ignore Leave Group messages for which there are no group members on
   the reception interface.

   When a non-Querier receives a Group-Specific Query message, if its
   existing group membership timer is greater than [Last Member Query
   Count] times the Max Response Time specified in the message, it sets
   its group membership timer to that value.

4.  Compatibility with IGMPv1 Routers

   An IGMPv2 host may be placed on a subnet where the Querier router has
   not yet been upgraded to IGMPv2.  The following requirements apply:

        The IGMPv1 router will send General Queries with the Max
        Response Time set to 0.  This MUST be interpreted as a value of
        100 (10 seconds).

        The IGMPv1 router expects Version 1 Membership Reports in
        response to its Queries, and will not pay attention to Version 2
        Membership Reports.  Therefore, a state variable MUST be kept
        for each interface, describing whether the multicast Querier on
        that interface is running IGMPv1 or IGMPv2.  This variable MUST
        be based upon whether or not an IGMPv1 query was heard in the
        last [Version 1 Router Present Timeout] seconds, and MUST NOT be
        based upon the type of the last Query heard.  This state
        variable MUST be used to decide what type of Membership Reports
        to send for unsolicited Membership Reports as well as Membership
        Reports in response to Queries.

        An IGMPv2 host MAY suppress Leave Group messages on a network
        where the Querier is using IGMPv1.

   An IGMPv2 router may be placed on a subnet where at least one router
   on the subnet has not yet been upgraded to IGMPv2.  The following
   requirements apply:

        If any IGMPv1 routers are present, the querier MUST use IGMPv1.
        The use of IGMPv1 must be administratively configured, as there
        is no reliable way of dynamically determining whether IGMPv1
        routers are present on a network.  Implementations MAY provide a
        way for system administrators to enable the use of IGMPv1 on
        their routers; in the absence of explicit configuration, the
        configuration MUST default to IGMPv2.  When in IGMPv1 mode,
        routers MUST send Periodic Queries with a Max Response Time of
        0, and MUST ignore Leave Group messages.  They SHOULD also warn
        about receiving an IGMPv2 query, although such warnings MUST be
        rate-limited.



Fenner                      Standards Track                     [Page 6]

RFC 2236           Internet Group Management Protocol      November 1997


        If a router is not explicitly configured to use IGMPv1 and hears
        an IGMPv1 Query, it SHOULD log a warning.  These warnings MUST
        be rate-limited.

5.  Compatibility with IGMPv1 Hosts

   An IGMPv2 host may be placed on a subnet where there are hosts that
   have not yet been upgraded to IGMPv2.  The following requirement
   applies:

        The host MUST allow its Membership Report to be suppressed by
        either a Version 1 Membership Report or a Version 2 Membership
        Report.

   An IGMPv2 router may be placed on a subnet where there are hosts that
   have not yet been upgraded to IGMPv2.  The following requirements
   apply:

        If a router receives a Version 1 Membership Report, it MUST set
        a timer to note that there are version 1 hosts present which are
        members of the group for which it heard the report.  This timer
        should be the same as the [Group Membership Interval].

        If there are version 1 hosts present for a particular group, a
        router MUST ignore any Leave Group messages that it receives for
        that group.

6.  Host State Diagram

   Host behavior is more formally specified by the state transition
   diagram below.  A host may be in one of three possible states with
   respect to any single IP multicast group on any single network
   interface:

   - "Non-Member" state, when the host does not belong to the group on
     the interface.  This is the initial state for all memberships on
     all network interfaces; it requires no storage in the host.

   - "Delaying Member" state, when the host belongs to the group on the
     interface and has a report delay timer running for that membership.

   - "Idle Member" state, when the host belongs to the group on the
     interface and does not have a report delay timer running for that
     membership.







Fenner                      Standards Track                     [Page 7]

RFC 2236           Internet Group Management Protocol      November 1997


   There are five significant events that can cause IGMP state
   transitions:

   - "join group" occurs when the host decides to join the group on the
     interface.  It may occur only in the Non-Member state.

   - "leave group" occurs when the host decides to leave the group on
     the interface.  It may occur only in the Delaying Member and Idle
     Member states.

   - "query received" occurs when the host receives either a valid
     General Membership Query message, or a valid Group-Specific
     Membership Query message.  To be valid, the Query message must be
     at least 8 octets long, and have a correct IGMP checksum.  The
     group address in the IGMP header must either be zero (a General
     Query) or a valid multicast group address (a Group-Specific Query).
     A General Query applies to all memberships on the interface from
     which the Query is received.  A Group-Specific Query applies to
     membership in a single group on the interface from which the Query
     is received.  Queries are ignored for memberships in the Non-Member
     state.

   - "report received" occurs when the host receives a valid IGMP
     Membership Report message (Version 1 or Version 2).  To be valid,
     the Report message must be at least 8 octets long and have a
     correct IGMP checksum.  A Membership Report applies only to the
     membership in the group identified by the Membership Report, on the
     interface from which the Membership Report is received.  It is
     ignored for memberships in the Non-Member or Idle Member state.

   - "timer expired" occurs when the report delay timer for the group on
     the interface expires.  It may occur only in the Delaying Member
     state.

   All other events, such as receiving invalid IGMP messages, or IGMP
   messages other than Query or Report, are ignored in all states.

   There are seven possible actions that may be taken in response to the
   above events:

   - "send report" for the group on the interface.  The type of report
     is determined by the state of the interface.  The Report Message is
     sent to the group being reported.








Fenner                      Standards Track                     [Page 8]

RFC 2236           Internet Group Management Protocol      November 1997


   - "send leave" for the group on the interface.  If the interface
     state says the Querier is running IGMPv1, this action SHOULD be
     skipped.  If the flag saying we were the last host to report is
     cleared, this action MAY be skipped.  The Leave Message is sent to
     the ALL-ROUTERS group (224.0.0.2).

   - "set flag" that we were the last host to send a report for this
     group.

   - "clear flag" since we were not the last host to send a report for
     this group.

   - "start timer" for the group on the interface, using a delay value
     chosen uniformly from the interval (0, Max Response Time], where
     Max Response time is specified in the Query.  If this is an
     unsolicited Report, the timer is set to a delay value chosen
     uniformly from the interval (0, [Unsolicited Report Interval] ].

   - "reset timer" for the group on the interface to a new value, using
     a delay value chosen uniformly from the interval (0, Max Response
     Time], as described in "start timer".

   - "stop timer" for the group on the interface.

   In all of the following state diagrams, each state transition arc is
   labeled with the event that causes the transition, and, in
   parentheses, any actions taken during the transition.  Note that the
   transition is always triggered by the event; even if the action is
   conditional, the transition still occurs.






















Fenner                      Standards Track                     [Page 9]

RFC 2236           Internet Group Management Protocol      November 1997


                              ________________
                             |                |
                             |                |
                             |                |
                             |                |
                   --------->|   Non-Member   |<---------
                  |          |                |          |
                  |          |                |          |
                  |          |                |          |
                  |          |________________|          |
                  |                   |                  |
                  | leave group       | join group       | leave group
                  | (stop timer,      |(send report,     | (send leave
                  |  send leave if    | set flag,        |  if flag set)
                  |  flag set)        | start timer)     |
          ________|________           |          ________|________
         |                 |<---------          |                 |
         |                 |                    |                 |
         |                 |<-------------------|                 |
         |                 |   query received   |                 |
         | Delaying Member |    (start timer)   |   Idle Member   |
    ---->|                 |------------------->|                 |
   |     |                 |   report received  |                 |
   |     |                 |    (stop timer,    |                 |
   |     |                 |     clear flag)    |                 |
   |     |_________________|------------------->|_________________|
   | query received    |        timer expired
   | (reset timer if   |        (send report,
   |  Max Resp Time    |         set flag)
   |  < current timer) |
    -------------------


   The all-systems group (address 224.0.0.1) is handled as a special
   case.  The host starts in Idle Member state for that group on every
   interface, never transitions to another state, and never sends a
   report for that group.

   In addition, a host may be in one of two possible states with respect
   to any single network interface:

   - "No IGMPv1 Router Present", when the host has not heard an IGMPv1
     style query for the [Version 1 Router Present Timeout].  This is
     the initial state.

   - "IGMPv1 Router Present", when the host has heard an IGMPv1 style
     query within the [Version 1 Router Present Timeout].




Fenner                      Standards Track                    [Page 10]

RFC 2236           Internet Group Management Protocol      November 1997


   There are two events that can cause state transitions:

   - "IGMPv1 query received", when the host receives a query with the
     Max Response Time field set to 0.

   - "timer expires", when the timer set to note the presence of an
     IGMPv1 router expires.

   And a single action that can be triggered by an event:

   - "set timer", setting the timer to its maximum value [Version 1
     Router Present Timeout] and (re)starting it.

                              ________________
                             |                |
                             |                |
                             |   No IGMPv1    |
                             |     Router     |
                             |    Present     |
                             |                |
                        ---->|                |----
                       |     |                |    |
                       |     |________________|    |
         timer expires |                           | IGMPv1 query
                       |      ________________     | received
                       |     |                |    | (set timer)
                       |     |                |    |
                       |     |                |    |
                        -----|     IGMPv1     |<---
                             |     Router     |
                             |    Present     |
                             |                |
                        ---->|                |----
                       |     |________________|    |
                       |                           |
                       | IGMPv1 query received     |
                       | (set timer)               |
                        ---------------------------













Fenner                      Standards Track                    [Page 11]

RFC 2236           Internet Group Management Protocol      November 1997


7.  Router State Diagram

   Router behavior is more formally specified by the state transition
   diagrams below.

   A router may be in one of two possible states with respect to any
   single attached network:

   - "Querier", when this router is designated to transmit IGMP
     Membership Queries on this network.

   - "Non-Querier", when there is another router designated to transmit
     IGMP membership Queries on this network.

   The following three events can cause the router to change states:

   - "query timer expired" occurs when the timer set for query
     transmission expires.

   - "query received from a router with a lower IP address" occurs when
     an IGMP Membership Query is received from a router on the same
     network with a lower IP address.

   - "other querier present timer expired" occurs when the timer set to
     note the presence of another querier with a lower IP address on the
     network expires.

   There are three actions that may be taken in response to the above
   events:

   - "start general query timer" for the attached network.

   - "start other querier present timer" for the attached network [Other
     Querier Present Interval].

   - "send general query" on the attached network.  The General Query is
     sent to the all-systems group (224.0.0.1), and has a Max Response
     Time of [Query Response Interval].













Fenner                      Standards Track                    [Page 12]

RFC 2236           Internet Group Management Protocol      November 1997


                                      --------------------------------
                              _______|________  gen. query timer      |
  ---------                  |                |        expired        |
 | Initial |---------------->|                | (send general query,  |
  ---------  (send gen. q.,  |                |  set gen. q. timer)   |
        set initial gen. q.  |                |<----------------------
              timer)         |    Querier     |
                             |                |
                        -----|                |<---
                       |     |                |    |
                       |     |________________|    |
 query received from a |                           | other querier
 router with a lower   |                           | present timer
 IP address            |                           | expired
 (set other querier    |      ________________     | (send general
  present timer)       |     |                |    |  query,set gen.
                       |     |                |    |  q. timer)
                       |     |                |    |
                        ---->|      Non       |----
                             |    Querier     |
                             |                |
                             |                |
                        ---->|                |----
                       |     |________________|    |
                       | query received from a     |
                       | router with a lower IP    |
                       | address                   |
                       | (set other querier        |
                       |  present timer)           |
                        ---------------------------

   A router should start in the Initial state on all attached networks,
   and immediately move to Querier state.

   In addition, to keep track of which groups have members, a router may
   be in one of four possible states with respect to any single IP
   multicast group on any single attached network:

   - "No Members Present" state, when there are no hosts on the network
     which have sent reports for this multicast group.  This is the
     initial state for all groups on the router; it requires no storage
     in the router.

   - "Members Present" state, when there is a host on the network which
     has sent a Membership Report for this multicast group.






Fenner                      Standards Track                    [Page 13]

RFC 2236           Internet Group Management Protocol      November 1997


   - "Version 1 Members Present" state, when there is an IGMPv1 host on
     the network which has sent a Version 1 Membership Report for this
     multicast group.

   - "Checking Membership" state, when the router has received a
     Leave Group message but has not yet heard a Membership Report for
     the multicast group.

   There are six significant events that can cause router state
   transitions:

   - "v2 report received" occurs when the router receives a Version 2
     Membership Report for the group on the interface.  To be valid, the
     Report message must be at least 8 octets long and must have a
     correct IGMP checksum.

   - "v1 report received" occurs when the router receives a Version 1
     Membership report for the group on the interface.  The same
     validity requirements apply.

   - "leave received" occurs when the router receives an IGMP Group
     Leave message for the group on the interface.  To be valid, the
     Leave message must be at least 8 octets long and must have a
     correct IGMP checksum.

   - "timer expired" occurs when the timer set for a group membership
     expires.

   - "retransmit timer expired" occurs when the timer set to retransmit
     a group-specific Membership Query expires.

   - "v1 host timer expired" occurs when the timer set to note the
     presence of version 1 hosts as group members expires.

   There are six possible actions that may be taken in response to the
   above events:

   - "start timer" for the group membership on the interface - also
     resets the timer to its initial value [Group Membership Interval]
     if the timer is currently running.

   - "start timer*" for the group membership on the interface - this
     alternate action sets the timer to [Last Member Query Interval] *
     [Last Member Query Count] if this router is a Querier, or the [Max
     Response Time] in the packet * [Last Member Query Count] if this
     router is a non-Querier.





Fenner                      Standards Track                    [Page 14]

RFC 2236           Internet Group Management Protocol      November 1997


   - "start retransmit timer" for the group membership on the interface
     [Last Member Query Interval].

   - "start v1 host timer" for the group membership on the interface,
     also resets the timer to its initial value [Group Membership
     Interval] if the timer is currently running.

   - "send group-specific query" for the group on the attached network.
     The Group-Specific Query is sent to the group being queried, and
     has a Max Response Time of [Last Member Query Interval].

   - "notify routing +" notify the routing protocol that there are
     members of this group on this connected network.

   - "notify routing -" notify the routing protocol that there are no
     longer any members of this group on this connected network.

     The state diagram for a router in Querier state follows:

































Fenner                      Standards Track                    [Page 15]

RFC 2236           Internet Group Management Protocol      November 1997


                              ________________
 ----------------------------|                |<-----------------------
|                            |                |timer expired           |
|               timer expired|                |(notify routing -,      |
|          (notify routing -)|   No Members   |clear rxmt tmr)         |
|                    ------->|    Present     |<-------                |
|                   |        |                |       |                |
|v1 report rec'd    |        |                |       |  ------------  |
|(notify routing +, |        |________________|       | | rexmt timer| |
| start timer,      |                    |            | |  expired   | |
| start v1 host     |  v2 report received|            | | (send g-s  | |
|  timer)           |  (notify routing +,|            | |  query,    | |
|                   |        start timer)|            | |  st rxmt   | |
|         __________|______              |       _____|_|______  tmr)| |
|        |                 |<------------       |              |     | |
|        |                 |                    |              |<----- |
|        |                 | v2 report received |              |       |
|        |                 | (start timer)      |              |       |
|        | Members Present |<-------------------|    Checking  |       |
|  ----->|                 | leave received     |   Membership |       |
| |      |                 | (start timer*,     |              |       |
| |      |                 |  start rexmt timer,|              |       |
| |      |                 |  send g-s query)   |              |       |
| |  --->|                 |------------------->|              |       |
| | |    |_________________|                    |______________|       |
| | |v2 report rec'd |  |                          |                   |
| | |(start timer)   |  |v1 report rec'd           |v1 report rec'd    |
| |  ----------------   |(start timer,             |(start timer,      |
| |v1 host              | start v1 host timer)     | start v1 host     |
| |tmr    ______________V__                        | timer)            |
| |exp'd |                 |<----------------------                    |
|  ------|                 |                                           |
|        |    Version 1    |timer expired                              |
|        | Members Present |(notify routing -)                         |
 ------->|                 |-------------------------------------------
         |                 |<--------------------
 ------->|_________________| v1 report rec'd     |
| v2 report rec'd |   |   (start timer,          |
| (start timer)   |   |    start v1 host timer)  |
 -----------------     --------------------------











Fenner                      Standards Track                    [Page 16]

RFC 2236           Internet Group Management Protocol      November 1997


   The state diagram for a router in  Non-Querier  state  is  similar,
   but non-Queriers do not send any messages and are only driven by
   message reception.Note that non-Queriers do not care whether a
   Membership Report message is Version 1 or Version 2.

                              ________________
                             |                |
                             |                |
                timer expired|                |timer expired
           (notify routing -)|   No Members   |(notify routing -)
                   --------->|    Present     |<---------
                  |          |                |          |
                  |          |                |          |
                  |          |                |          |
                  |          |________________|          |
                  |                   |                  |
                  |                   |report received   |
                  |                   |(notify routing +,|
                  |                   | start timer)     |
          ________|________           |          ________|________
         |                 |<---------          |                 |
         |                 |  report received   |                 |
         |                 |  (start timer)     |                 |
         | Members Present |<-------------------|     Checking    |
         |                 | g-s query rec'd    |    Membership   |
         |                 | (start timer*)     |                 |
    ---->|                 |------------------->|                 |
   |     |_________________|                    |_________________|
   | report received |
   | (start timer)   |
    -----------------

8.  List of timers and default values

   Most of these timers are  configurable.   If  non-default  settings
   are used,  they MUST be consistent among all routers on a single
   link.  Note that parentheses are used to  group  expressions  to
   make  the  algebra clear.

8.1.  Robustness Variable

   The Robustness Variable allows tuning for the expected packet loss on
   a subnet.  If a subnet is expected to be lossy, the Robustness
   Variable may be increased.  IGMP is robust to (Robustness Variable-1)
   packet losses.  The Robustness Variable MUST NOT be zero, and SHOULD
   NOT be one.  Default: 2





Fenner                      Standards Track                    [Page 17]

RFC 2236           Internet Group Management Protocol      November 1997


8.2.  Query Interval

   The Query Interval is the interval between General Queries sent  by
   the Querier.  Default: 125 seconds.

   By varying the [Query Interval], an administrator may tune the number
   of IGMP messages on the subnet; larger values cause IGMP Queries to
   be sent less often.

8.3.  Query Response Interval

   The Max Response Time inserted into the periodic General Queries.
   Default: 100 (10 seconds)

   By varying the [Query Response Interval], an administrator may tune
   the burstiness of IGMP messages on the subnet; larger values make the
   traffic less bursty, as host responses are spread out over a larger
   interval.  The number of seconds represented by the [Query Response
   Interval] must be less than the [Query Interval].

8.4.  Group Membership Interval

   The Group Membership Interval is the amount of time that must pass
   before a multicast router decides there are no more members of a
   group on a network.  This value MUST be ((the Robustness Variable)
   times (the Query Interval)) plus (one Query Response Interval).

8.5.  Other Querier Present Interval

   The Other Querier Present Interval is the length of time that must
   pass before a multicast router decides that there is no longer
   another multicast router which should be the querier.  This value
   MUST be ((the Robustness Variable) times (the Query Interval)) plus
   (one half of one Query Response Interval).

8.6.  Startup Query Interval

   The Startup Query Interval is the interval between General Queries
   sent by a Querier on startup.  Default: 1/4 the Query Interval.

8.7.  Startup Query Count

   The Startup Query Count is the number of Queries sent out on startup,
   separated by the Startup Query Interval.  Default: the Robustness
   Variable.






Fenner                      Standards Track                    [Page 18]

RFC 2236           Internet Group Management Protocol      November 1997


8.8.  Last Member Query Interval

   The Last Member Query Interval is the Max Response Time inserted into
   Group-Specific Queries sent in response to Leave Group messages, and
   is also the amount of time between Group-Specific Query messages.
   Default: 10 (1 second)

   This value may be tuned to modify the "leave latency" of the network.
   A reduced value results in reduced time to detect the loss of the
   last member of a group.

8.9.  Last Member Query Count

   The Last Member Query Count is the number of Group-Specific Queries
   sent before the router assumes there are no local members.  Default:
   the Robustness Variable.

8.10.  Unsolicited Report Interval

   The Unsolicited Report Interval is the time between repetitions of a
   host's initial report of membership in a group.  Default: 10 seconds.

8.11.  Version 1 Router Present Timeout

   The Version 1 Router Present Timeout is how long a host must wait
   after hearing a Version 1 Query before it may send any IGMPv2
   messages.  Value: 400 seconds.

9.  Message destinations

   This information is provided elsewhere in the document, but is
   summarized here for convenience.

   Message Type                  Destination Group
   ------------                  -----------------
   General Query                 ALL-SYSTEMS (224.0.0.1)
   Group-Specific Query          The group being queried
   Membership Report             The group being reported
   Leave Message                 ALL-ROUTERS (224.0.0.2)


     Note: in older (i.e., non-standard and now obsolete) versions of
     IGMPv2, hosts send Leave Messages to the group being left.  A
     router SHOULD accept Leave Messages addressed to the group being
     left in the interests of backwards compatibility with such hosts.
     In all cases, however, hosts MUST send to the ALL-ROUTERS address
     to be compliant with this specification.




Fenner                      Standards Track                    [Page 19]

RFC 2236           Internet Group Management Protocol      November 1997


10.  Security Considerations

   We consider the ramifications of a forged message of each type.

   Query Message:

     A forged Query message from a machine with a lower IP address than
     the current Querier will cause Querier duties to be assigned to the
     forger.  If the forger then sends no more Query messages, other
     routers' Other Querier Present timer will time out and one will
     resume the role of Querier.  During this time, if the forger
     ignores Leave Messages, traffic might flow to groups with no
     members for up to [Group Membership Interval].

     A forged Query message sent to a group with members will cause the
     hosts which are members of the group to report their memberships.
     This causes a small amount of extra traffic on the LAN, but causes
     no protocol problems.

   Report messages:

     A forged Report message may cause multicast routers to think there
     are members of a group on a subnet when there are not.  Forged
     Report messages from the local subnet are meaningless, since
     joining a group on a host is generally an unprivileged operation,
     so a local user may trivially gain the same result without forging
     any messages.  Forged Report messages from external sources are
     more troublesome; there are two defenses against externally forged
     Reports:

     - Ignore the Report if you cannot identify the source
       address of the packet as belonging to a subnet assigned to the
       interface on which the packet was received.  This solution means
       that Reports sent by mobile hosts without addresses on the local
       subnet will be ignored.

     - Ignore Report messages without Router Alert options [RFC 2113],
       and require that routers not forward Report messages.  (The
       requirement is not a requirement of generalized filtering in the
       forwarding path, since the packets already have Router Alert
       options in them).  This solution breaks backwards compatibility
       with implementations of earlier versions of this specification
       which did not require Router Alert.








Fenner                      Standards Track                    [Page 20]

RFC 2236           Internet Group Management Protocol      November 1997


     A forged Version 1 Report Message may put a router into "version 1
     members present" state for a particular group, meaning that the
     router will ignore Leave messages.  This can cause traffic to flow
     to groups with no members for up to [Group Membership Interval].
     There are two defenses against forged v1 Reports:

     - To defend against externally sourced v1 Reports, ignore the
       Report if you cannot identify the source address of the packet as
       belonging to a subnet assigned to the interface on which the
       packet was received.  This solution means that v1 Reports sent by
       mobile hosts without addresses on the local subnet will be
       ignored.

     - Provide routers with a configuration switch to ignore Version 1
       messages completely.  This breaks automatic compatibility with
       Version 1 hosts, so should only be used in situations where "fast
       leave" is critical.  This solution protects against forged
       version 1 reports from the local subnet as well.

   Leave message:

     A forged Leave message will cause the Querier to send out Group-
     Specific Queries for the group in question.  This causes extra
     processing on each router and on each member of the group, but can
     not cause loss of desired traffic.  There are two defenses against
     externally forged Leave messages:

     - Ignore the Leave message if you cannot identify the source
       address of the packet as belonging to a subnet assigned to the
       interface on which the packet was received.  This solution means
       that Leave messages sent by mobile hosts without addresses on the
       local subnet will be ignored.

     - Ignore Leave messages without Router Alert options [RFC 2113],
       and require that routers not forward Leave messages.  (The
       requirement is not a requirement of generalized filtering in the
       forwarding path, since the packets already have Router Alert
       options in them).  This solution breaks backwards compatibility
       with implementations of earlier versions of this specification
       which did not require Router Alert.

11.  Acknowledgments

   IGMPv2 was designed by Rosen Sharma and Steve Deering.







Fenner                      Standards Track                    [Page 21]

RFC 2236           Internet Group Management Protocol      November 1997


12.  References

   RFC 2119       Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

   RFC 2113       Katz, D., "IP Router Alert Option," RFC 2113,
                  February 1997.

   RFC 1112       Deering, S., "Host Extensions for IP Multicasting",
                  STD 5, RFC 1112, August 1989.









































Fenner                      Standards Track                    [Page 22]

RFC 2236           Internet Group Management Protocol      November 1997


13.  Appendix I - Changes from IGMPv1

   The IGMPv1 "Version" and "Type" fields are combined into a single
   "Type" field.

   A new IGMP Type is assigned to Version 2 Membership Report messages,
   so a router may tell the difference between an IGMPv1 and IGMPv2 host
   report.

   A new IGMP Type is created for the IGMPv2 Leave Group message.

   The Membership Query message is changed so that a previously unused
   field contains a new value, the Max Response Time.

   The IGMPv2 spec now specifies a querier election mechanism.  In
   IGMPv1, the querier election was left up to the multicast routing
   protocol, and different protocols used different mechanisms.  This
   could result in more than one querier per network, so the election
   mechanism has been standardized in IGMPv2.  However, this means that
   care must be taken when an IGMPv2 router is trying to coexist with an
   IGMPv1 router that uses a different querier election mechanism.  In
   particular, it means that an IGMPv2 router must be able to act as an
   IGMPv1 router on a particular network if configured to do so.  The
   actions required include:

   - Set the Max Response Time field to 0 in all queries.

   - Ignore Leave Group messages.

   The IGMPv2 spec relaxes the requirements on validity-checking for
   Membership Queries and Membership Reports.  When upgrading an
   implementation, be sure to remove any checks that do not belong.

   The IGMPv2 spec requires the presence of the IP Router Alert option
   [RFC 2113] in all packets described in this memo.

14.  Author's Address

   William C. Fenner
   Xerox PARC
   3333 Coyote Hill Road
   Palo Alto, CA 94304
   Phone: +1 650 812 4816

   EMail: fenner@parc.xerox.com






Fenner                      Standards Track                    [Page 23]

RFC 2236           Internet Group Management Protocol      November 1997


15.  Full Copyright Statement

   Copyright (C) The Internet Society (1997).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Fenner                      Standards Track                    [Page 24]


 

RFC, FYI, BCP